

24in

Hours

SamsTeachYourself

Eighth Edition

Java

Rogers Cadenhead

Sams Teach Yourself Java in 24 Hours, Eighth Edition

Copyright © 2018 by Pearson Education, Inc.

ISBN-13: 978-0-672-33794-9
ISBN-10: 0-672-33794-0

Library of Congress Control Number: 2017946911

Printed in the United States of America

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearsoned.com

Contents at a Glance
PART I GETTING STARTED

1 Becoming a Programmer ...3

2 Writing Your First Program ...13

3 Vacationing in Java ...27

4 Understanding How Java Programs Work ..41

PART II LEARNING THE BASICS OF PROGRAMMING

5 Storing and Changing Information in a Program ..53

6 Using Strings to Communicate ..71

7 Using Conditional Tests to Make Decisions ..83

8 Repeating an Action with Loops ...99

PART III WORKING WITH INFORMATION IN NEW WAYS

9 Storing Information with Arrays ..111

10 Creating Your First Object..125

11 Describing What Your Object Is Like ..141

12 Making the Most of Existing Objects ..159

PART IV MOVING INTO ADVANCED TOPICS

13 Storing Objects in Data Structures ...173

14 Handling Errors in a Program ...187

15 Creating a Threaded Program ..203

16 Using Inner Classes and Closures ...221

PART V PROGRAMMING A GRAPHICAL USER INTERFACE

17 Building a Simple User Interface ..237

18 Laying Out a User Interface ...259

19 Responding to User Input ..273

PART VI WRITING INTERNET APPLICATIONS

20 Reading and Writing Files ..291

21 Using Java 9’s New HTTP Client ..309

22 Creating Java2D Graphics ...325

23 Creating Minecraft Mods with Java ..341

24 Writing Android Apps ...375

APPENDIXES

A Using the NetBeans Integrated Development Environment...399

B Where to Go from Here: Java Resources ..407

C This Book’s Website ...411

D Fixing a Problem with the Android Studio Emulator ..413

E Fixing Package Not Visible Errors in NetBeans ..419

Introduction 1

PART I: Getting Started

HOUR 1: Becoming a Programmer 3

Choosing a Language 4

Telling the Computer What to Do 6

How Programs Work 7

When Programs Don’t Work 8

Choosing a Java Programming Tool 9

Installing a Java Development Tool 10

HOUR 2: Writing Your First Program 13

What You Need to Write Programs 13

Creating the Saluton Program 14

Beginning the Program 14

The class Statement 16

What the main Statement Does 17

Those Squiggly Bracket Marks 17

Storing Information in a Variable 18

Displaying the Contents of a Variable 18

Saving the Finished Product 19

Compiling the Program into a Class File 20

Fixing Errors 20

Running a Java Program 22

HOUR 3: Vacationing in Java 27

First Stop: Oracle 27

A Brief History of Java 29

Going to School with Java 30

Lunch at Food Network 32

Watching the Skies at NASA 33

Getting Down to Business 34

Stopping by SourceForge for Directions 35

HOUR 4: Understanding How Java

 Programs Work 41

Creating an Application 41

Sending Arguments to Applications 43

The Java Class Library 45

Trying Java Statements in JShell 49

PART II: Learning the Basics of
 Programming

HOUR 5: Storing and Changing

 Information in a Program 53

Statements and Expressions 53

Assigning Variable Types 54

Integers and Floating-Point Numbers 54

Characters and Strings 55

Other Numeric Variable Types 56

The boolean Variable Type 57

Naming Your Variables 58

Storing Information in Variables 59

All About Operators 60

Incrementing and Decrementing a
 Variable 61

Operator Precedence 63

Using Expressions 64

HOUR 6: Using Strings to Communicate 71

Storing Text in Strings 71

Displaying Strings in Programs 72

Using Special Characters in Strings 73

Pasting Strings Together 74

Using Other Variables with Strings 74

Advanced String Handling 75

Comparing Two Strings 76

Determining the Length of a String 77

Contents

Copying a String with a New Case 77

Looking for a String 77

Presenting Credits 78

HOUR 7: Using Conditional Tests to

 Make Decisions 83

if Statements 84

Less-Than and Greater-Than
 Comparisons 84

Equal and Not Equal Comparisons 85

Organizing a Program with Block
Statements 85

if-else Statements 87

switch Statements 87

The Ternary Operator 90

Watching the Clock 91

HOUR 8: Repeating an Action with Loops 99

for Loops 99

while Loops 102

do-while Loops 103

Exiting a Loop 104

Naming a Loop 105

Complex for Loops 106

Testing Your Computer Speed 107

PART III: Working with Information
 in New Ways

HOUR 9: Storing Information with Arrays 111

Creating Arrays 112

Using Arrays 113

Multidimensional Arrays 115

Sorting an Array 116

Counting Characters in Strings 118

HOUR 10: Creating Your First Object 125

How Object-Oriented Programming
 Works 125

Objects in Action 127

What Objects Are 128

Understanding Inheritance 129

Building an Inheritance Hierarchy 130

Converting Objects and Simple Variables 131

Casting Simple Variables 131

Casting Objects 132

Converting Simple Variables to
 Objects and Back 133

Creating an Object 135

HOUR 11: Describing What Your

 Object Is Like 141

Creating Variables 141

Creating Class Variables 143

Creating Behavior with Methods 144

Declaring a Method 145

Similar Methods with Different
 Arguments 146

Constructors 147

Class Methods 148

Variable Scope within Methods 148

Putting One Class Inside Another 149

Using the this Keyword 151

Using Class Methods and Variables 152

HOUR 12: Making the Most of

 Existing Objects 159

The Power of Inheritance 159

Inheriting Behavior and Attributes 160

Overriding Methods 161

Establishing Inheritance 161

Using this and super in a Subclass 162

Working with Existing Objects 163

Storing Objects of the Same Class
 in Array Lists 164

Looping Through an Array List 166

Creating a Subclass 168

PART IV: Moving into Advanced Topics

HOUR 13: Storing Objects in

 Data Structures 173

Array Lists 174

Hash Maps 180

HOUR 14: Handling Errors in a Program 187

Exceptions 188

Catching Exceptions in a try-catch
 Block 189

Catching Several Different Exceptions 192

Handling Something After an
 Exception 194

Throwing Exceptions 194

Ignoring Exceptions 196

Exceptions That Don’t Need catch 197

Throwing and Catching Exceptions 197

HOUR 15: Creating a Threaded Program 203

Threads 203

Slowing Down a Program 204

Creating a Thread 204

Working with Threads 208

The class Declaration 209

Setting Up Variables 209

The Constructor 210

Catching Errors as You Set Up URLs 211

Starting the Thread 211

Running the Thread 212

Handling Mouse Clicks 213

Displaying Revolving Links 213

Stopping a Thread 216

HOUR 16: Using Inner Classes and

 Closures 221

Inner Classes 222

Anonymous Inner Classes 225

Closures 229

PART V: Programming a Graphical
 User Interface

HOUR 17: Building a Simple User

 Interface 237

Swing and the Abstract Windowing
 Toolkit 237

Using Components 238

Windows and Frames 238

Buttons 242

Labels and Text Fields 245

Check Boxes 246

Combo Boxes 247

Text Areas 248

Panels 251

Creating Your Own Component 251

HOUR 18: Laying Out a User Interface 259

Using Layout Managers 259

The GridLayout Manager 261

The BorderLayout Manager 262

The BoxLayout Manager 263

Separating Components with Insets 264

Laying Out an Application 265

HOUR 19: Responding to User Input 273

Getting Your Programs to Listen 273

Setting Up Components to Be Heard 274

Handling User Events 275

Check Box and Combo Box Events 276

Keyboard Events 276

Enabling and Disabling Components 278

Completing a Graphical Application 279

PART VI: Writing Internet Applications

HOUR 20: Reading and Writing Files 291

Streams 291

Files 292

Reading Data from a Stream 293

Buffered Input Streams 297

Writing Data to a Stream 299

Reading and Writing Configuration
 Properties 302

HOUR 21: Using Java 9’s New

 HTTP Client 309

Java Modules 309

Making an HTTP Request 310

Saving a File from the Web 314

Posting Data on the Web 317

HOUR 22: Creating Java2D Graphics 325

Using the Font Class 325

Using the Color Class 326

Creating Custom Colors 327

Drawing Lines and Shapes 328

Drawing Lines 328

Drawing Rectangles 329

Drawing Ellipses and Circles 330

Drawing Arcs 330

Baking a Pie Graph 331

HOUR 23: Creating Minecraft Mods

 with Java 341

Setting Up a Minecraft Server 342

Fixing Problems Running the Server 344

Connecting to the Server 346

Fixing a Server Connection Problem 347

Creating Your First Mod 348

Teaching Zombies to Ride Horses 356

Finding All Mobs (and Killing Them) 362

Writing a Mod that Can Build Things 366

HOUR 24: Writing Android Apps 375

Introduction to Android 375

Creating an Android App 377

Exploring a New Android Project 378

Creating an App 380

Setting Up an Android Emulator 382

Running the App 383

Designing a Real App 385

Organizing Resources 386

Configuring the App’s Manifest File 387

Designing a User Interface 388

Writing Java Code 390

APPENDIXES

APPENDIX A: Using the NetBeans

 Integrated Development Environment 399

Installing NetBeans 399

Creating a New Project 400

Creating a New Java Class 402

Running the Application 404

Fixing Errors 404

APPENDIX B: Where to Go from Here:

 Java Resources 407

Other Books to Consider 407

Oracle’s Official Java Site 408

Java Class Documentation 408

Other Java Websites 408

This Book’s Official Site 408

Workbench 409

Slashdot 409

Other Java Weblogs 409

InformIT 409

Stack Overflow 409

JavaWorld Magazine 409

Developer.com’s Java Directory 410

Java Meetings 410

Job Opportunities 410

APPENDIX C: This Book’s Website 411

APPENDIX D: Fixing a Problem with the

 Android Studio Emulator 413

Problems Running an App 413

Install HAXM in Android Studio 414

Install HAXM on Your Computer 415

Checking BIOS Settings 417

APPENDIX E: Fixing Package Not

 Visible Errors in NetBeans 419

Adding Module Info 419

Index 421

http://Developer.com$$$�s

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the

corresponding Web Edition, which provides several special features to help you learn:

u The complete text of the book online

u Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any

modern web browser that supports HTML5.

To get access to the Web Edition of Sams Teach Yourself Java in 24 Hours, Eighth Edition, all you

need to do is register this book:

 1. Go to www.informit.com/register

 2. Sign in or create a new account

 3. Enter ISBN: 9780672337949

 4. Answer the questions as proof of purchase

The Web Edition will appear under the Digital Purchases tab on your Account page.

Click the Launch link to access the product.

http://www.informit.com/register

As the author of computer books, I spend a lot of time lurking in the computer section of

bookstores, observing the behavior of readers while I’m pretending to read the latest issue of Soap

Opera Digest magazine.

Because of my research, I’ve learned that if you have picked up this book and turned to this

introduction, I only have 13 more seconds before you put it down and head to the coffee bar for

a double-tall-decaf-skim-with-two-shots-of-vanilla-hold-the-whip latte.

So I’ll keep this brief: Computer programming with Java is easier than it looks.

I’m not supposed to tell you that because thousands of programmers have used their Java

skills to get high-paying jobs in software development, server programming, and Android

app creation. The last thing any programmer wants is for the boss to know that anyone with

persistence and a little free time can learn this language, the most popular programming

language on the planet. By working your way through each of the one-hour tutorials in Sams

Teach Yourself Java in 24 Hours, you’ll be able to learn Java programming quickly.

Anyone can learn how to write computer programs, even if you can’t program a DVR. Java

is one of the best programming languages to learn because it’s a useful, powerful, modern

technology that’s embraced by companies around the world.

This book is aimed at non-programmers, new programmers who think they hate this stuff, and

experienced programmers who want to get up to speed swiftly with Java. It uses Java 9, the latest

and greatest version of the language.

Java is an enormously popular programming language because of the things it makes possible.

You can create programs that feature a graphical user interface, connect to web services, run on

an Android phone or tablet, and more.

This language turns up in some amazing places. One of them is Minecraft, the gaming

phenomenon written entirely in Java. (In this book you learn how to create Java programs that

run in that game alongside creepers and zombie pigmen!)

This book teaches Java programming from the ground up. It introduces the concepts in English

instead of jargon with step-by-step examples of working programs you will create. Spend 24

hours with this book and you’ll be writing your own Java programs, confident in your ability

Introduction

2 Introduction

to use the language and learn more about it. You also will have skills that are becoming

increasingly important—such as Internet computing, graphical user interface design, app

creation, and object-oriented programming.

These terms might not mean much to you now. In fact, they’re probably the kind of thing that

makes programming seem intimidating and difficult. However, if you can use a computer to

create a photo album on Facebook, pay your taxes, or work an Excel spreadsheet, you can learn

to write computer programs by reading Sams Teach Yourself Java in 24 Hours.

NOTE

At this point, if you would rather have coffee than Java, please reshelve this book with the front
cover facing outward on an endcap near a lot of the store’s foot traffic.

HOUR 1
Becoming a Programmer

This Hour’s To-Do List:

 u Find out the reasons to learn Java.

 u Discover how programs work.

 u Select a Java development tool.

 u Get ready to write your first program.

You’ve probably heard that computer programming is insanely difficult. It requires a degree in

computer science, thousands of dollars in computer hardware and software, a keen analytical

mind, the patience of Job, and a strong liking for caffeinated drinks.

Aside from the part about caffeine, you heard wrong. Programming is easier than you might

think, despite what programmers have been telling people for years to make it easier for us to

land high-paying jobs.

This is a great time to learn programming. Countless programming tools are being made

available as free downloads on the Web, and thousands of programmers distribute their work

as open source so other people can examine how the software was written, fix errors, and

contribute improvements. In a recovering economy, many companies are hiring programmers.

It’s a great time to learn Java, because the language is everywhere. Billions of mobile devices use

Android, an operating system whose apps are all written in Java. If you have an Android phone,

you’ve been enjoying the work of Java programmers every time you look up a movie, rock out

on streaming radio, or sling an antagonistic avian at a poorly built fortress of swine.

This book aims to teach Java programming to three kinds of people:

 1. Nervous novices who never tried to program before

 2. Bitter beginners who tried programming but hated it like Lord Voldemort hates orphaned

British schoolchildren

 3. Impatient intellectuals who know another programming language and want to get up to

speed quickly on Java

4 HOUR 1: Becoming a Programmer

To achieve this goal, this book uses the English language as much as possible instead of

technical jargon or obscure acronyms. All new programming terms are thoroughly explained as

they are introduced.

If I’ve succeeded, you will finish this book with enough programming skills to be a danger to

yourself and others. You’ll be able to write programs, plunge into programming classes and

books with more confidence, and learn new languages more easily. (Programming languages, to

be clear. This book won’t help you master Spanish, Esperanto, or Klingon.)

You also will have skills with Java, the most widely used programming language on the planet.

The first hour of this book provides an introduction to programming and guidance on setting up

your computer so you can use it to write and run Java programs.

Choosing a Language
If you’re comfortable enough with a computer to prepare a nice-looking résumé, balance a

checkbook, or share your vacation photos on Instagram, you can create computer software.

The key to learning how to program is to start with the right language. The programming

language you choose often depends on the tasks you want to accomplish. Each language has

strengths and weaknesses. Back in my day, young whippersnappers, people learned to program

with the BASIC language because it was created with beginners in mind.

NOTE

The BASIC language was invented to be easy for students to learn (the B in BASIC stands for
Beginner’s). The downside to using some form of BASIC is that it’s easy to fall into sloppy program-
ming habits with the language.

The most popular language that employs BASIC today is Visual Basic, a programming language

from Microsoft that has moved far beyond its roots. VB, as it also is called, is designed for

creating programs to run on computers and mobile devices that use the Windows operating

system. Another popular language is PHP, a scripting language for creating websites. Other

widely used languages you may have heard about include C++, Ruby, Javascript, and Python.

Each of these languages has its adherents, but the most widely taught in computer science

classes at the high school and collegiate level is Java.

The Java programming language, which is offered by Oracle, is more difficult to learn than

some other languages such as VB and PHP, but it’s a great starting place for several reasons.

One advantage of learning Java is that you can use it across a variety of operating systems and

computing environments. Java programs can be desktop software, web applications, web servers,

Choosing a Language 5

Android apps, and more, running on Windows, Mac, Linux, and other operating systems. This

versatility is referenced by the ambitious early Java slogan “Write once, run anywhere.”

NOTE

Early Java programmers had a less flattering slogan: “Write once, debug everywhere.” The language
has come a long way, baby, since the first version was released in 1996.

Another important advantage is that Java requires a highly organized approach for getting

programs to work. You must be particular about how you write programs and how they store

and alter data.

When you start writing Java programs, you might not see the language’s persnickety behavior

as an advantage. You could tire of writing a program and having several errors to fix before the

program even can be run. The benefit of this extra effort is that the software you create is more

reliable, useful, and error-free.

In the coming hours, you learn all of Java’s rules and the pitfalls to avoid.

Java was invented by the Canadian computer scientist James Gosling as a better way to create

computer programs. While working at Sun Microsystems in 1991, Gosling was unhappy with the

way the C++ programming language was performing on a project, so he created a new language

that did the job better. It’s a matter of contentious debate whether Java is superior to other

programming languages, of course, but the success of the language demonstrates the strength of

his initial design. Fifteen billion devices across the world are running Java, a number so amazing

I’m going to repeat it. Fifteen billion! More than 1,000 books have been published about the

language since its introduction. (This is my twentieth.)

Regardless of whether Java is the best language, it definitely is a great language to learn. You get

your first chance to try out Java during Hour 2, “Writing Your First Program.”

Learning one programming language makes it much easier to learn subsequent languages.

Many are similar to each other, so you aren’t starting from scratch when you plunge into a

new one. For instance, many C++ and Smalltalk programmers find it fairly easy to learn Java

because Java borrows ideas from those earlier languages. Similarly, C# adopts many ideas from

Java, so it’s easier to pick up for Java programmers.

NOTE

C++ is mentioned several times this hour, so you might be tripping over the term, wondering what it
means—and how it’s pronounced. C++ is pronounced “C-Plus-Plus,” and it’s a programming language
developed by Danish computer scientist Bjarne Stroustrop at Bell Laboratories. C++ is an enhance-
ment of the C programming language, hence the Plus-Plus part of the name. Why not just call it C+?
The Plus-Plus part is a computer programming joke you’ll understand later in this book.

6 HOUR 1: Becoming a Programmer

Telling the Computer What to Do
A computer program, also called software, is a way to tell a computer to perform a task.

Everything that the computer does, from booting up to shutting down, is done by a program.

Mac OS X is a program; Minecraft is a program; the driver software that controls your printer is

a program; even the dreaded blue screen of death on a crashed Windows PC is a program.

Computer programs are made up of a list of commands the computer handles in a specific order

when the program is run. Each command is called a statement.

If your house had its own butler and you were a control freak with a Type-A personality, you

could give your servant a detailed set of instructions to follow every day, like this:

Dear Mr. Jeeves,

Please take care of these errands for me while I’m out asking Congress for a bailout:

Item 1: Vacuum the living room.

Item 2: Go to the store.

Item 3: Pick up soy sauce, wasabi, and as many California sushi rolls as you can carry.

Item 4: Return home.

Sincerely, your lord and master,

Bertie Wooster

If you tell a human butler what to do, there’s a certain amount of leeway in how your requests

are fulfilled. If California rolls aren’t available, Jeeves could bring Boston rolls home instead.

Computers don’t do leeway. They follow instructions literally. The programs that you write are

followed precisely, one instruction at a time.

The following example is a three-line computer program, written in BASIC. Take a look at it, but

don’t worry too much about what each line is supposed to mean.

1 PRINT "Hey Tom, it's Bob from the office down the hall."

2 PRINT "It's good to see you buddy, how've you been?"

3 INPUT A$

Translated into English, this program is equivalent to giving a computer the following to-do list:

Dear personal computer,

Item 1: Display the message, “Hey Tom, it’s Bob from the office down the hall.”

Item 2: Ask the question, “It’s good to see you buddy, how’ve you been?”

How Programs Work 7

Item 3: Give the user a chance to answer the question.

Sincerely, your lord and master,

Ima Coder

Each line in a computer program is called a statement. A computer handles each statement in a

program in a specific order, in the same way that a cook follows a recipe or Mr. Jeeves the butler

follows the orders of Bertie Wooster. In BASIC, the line numbers are used to put the statements in

the correct order. Other languages such as Java do not use line numbers, favoring different ways

to tell the computer how to run a program.

Because of the way programs function, you can’t blame the computer when something goes

wrong as your program runs. The computer is doing exactly what you told it to do, so the blame

for any errors usually lies with the programmer.

That’s the bad news. The good news is you can’t do any permanent harm. No computers will be

injured as you learn to program in Java.

How Programs Work
The collection of statements that make up a computer program is called its source code.

Most computer programs are written in the same way that you write an email—by typing each

statement into a text window. Some programming tools come with their own source code editor

and others can be used with any text-editing software.

When you have finished writing a computer program, you save the file to disk. Computer

programs often have their own filename extension to indicate what type of file they are. Java

programs must have the extension .java, as in Calculator.java.

NOTE

Computer programs should be prepared as text files with no special formatting. Notepad, a text
 editor that comes with Windows, saves all files as unformatted text. You also can use TextEdit on
Macs or the vi editor or emacs on Linux systems to create text files without formatting. An easier
solution is coming up later this hour.

To run a program you have saved as a file, you need some help. The kind of help required

depends on the programming language you’re using. Some languages require an interpreter to

run their programs. The interpreter examines each line of a computer program and executes

that line, then proceeds to the next line. Many versions of BASIC are interpreted languages.

8 HOUR 1: Becoming a Programmer

The biggest advantage of interpreted languages is that they are faster to test. When you are

writing a BASIC program, you can try it out immediately, fix errors, and try again. The primary

disadvantage is that interpreted languages run slower than other programs. Each line has to be

translated into instructions the computer can run, one line at a time.

Other programming languages require a compiler. The compiler takes a program and translates

it into a form that the computer can understand. It also makes the program run as efficiently as

possible. The compiled program can be run directly without the need for an interpreter.

Compiled programs run more quickly than interpreted programs but take more time to test. You

have to write your program and compile the whole thing before trying it out. If you find an error

and fix it, you must compile the program again.

Java is unusual because it requires both a compiler and an interpreter. The compiler converts

the statements that make up the program into bytecode. Once this bytecode has been created

successfully, it can be run by an interpreter called the Java Virtual Machine.

The Java Virtual Machine, also called a JVM, is the thing that makes it possible for the same

Java program to run without modification on different operating systems and different kinds

of computing devices. The virtual machine turns bytecode into instructions that a particular

device’s operating system can execute.

NOTE

Java 9 introduces a new tool called JShell that acts like an interpreter, running a Java statement
right when it is typed in. JShell works by putting the statement into a Java program, compiling that
program into bytecode, and running it. This is a useful tool for learning and testing.

When Programs Don’t Work
Many new programmers become discouraged when they start to test their programs. Errors

appear everywhere. Some of these are syntax errors, which are identified by the computer as it

looks at the program and becomes confused by the way a statement has been written. Other

errors are logic errors, which only are noticed by the programmer as the program is being tested

(or might be overlooked entirely). Logic errors often cause it to do something unintended.

As you begin writing your own programs, you become well acquainted with errors. They’re a

natural part of the process. Programming errors are called bugs, a term that dates back a century

or more to describe errors in technical devices.

The process of fixing errors also has its own term: debugging.

It’s no coincidence that there are so many ways to describe errors. You get a lot of debugging

experience as you learn programming—whether you want it or not.

Choosing a Java Programming Tool 9

NOTE

One of the first computer bugs was discovered in 1947 by a team that included the American com-
puter scientist Grace Hopper. Hopper was testing a computer at Harvard when a relay malfunctioned.
The cause wasn’t a software problem—it was an actual bug! A team member debugged the com-
puter by removing a dead moth and taped it into a logbook with the note, “First actual case of bug
being found.” The bug and logbook page can be viewed at www.doncio.navy.mil/CHIPS/ArticleDetails.
aspx?id=3489.

Choosing a Java Programming Tool
To start writing Java programs, you must have a Java programming tool. Several such programs

are available for Java, including the simple Java Development Kit and the more sophisticated

Eclipse, IntelliJ IDEA, and NetBeans. The latter three tools are each an integrated development

environment (IDE), a powerful tool used by professional programmers to get work done.

Whenever Oracle releases a new version of Java, the first tool that supports it is the Java

Development Kit (JDK).

To create the programs in this book, you must use JDK version 9 or a programming tool that

works on top of it. The JDK is a set of free command-line tools for creating Java software. It lacks

a graphical user interface, so if you have never worked in a non-graphical environment such as

the Windows command prompt or Linux command-line interface, you will find it challenging to

use the JDK.

The NetBeans IDE, also offered for free by Oracle, is a much easier way to write and test Java

code than the JDK. NetBeans includes a graphical user interface, source code editor, user

interface designer, and project manager. It works in complement to the JDK, running it behind

the scenes, so you must have both tools on your system when you begin developing Java

programs.

Most of the programs in this book were created with NetBeans, which you can download and

install separately from the JDK. You can use other Java tools as long as they support JDK 9.

NOTE

You don’t have to use NetBeans in this book. If you can use the JDK or another tool to create,
compile, and run a program, those tasks are all that most projects require. NetBeans is covered
because for readers of past editions it has proven easier than the JDK. I use NetBeans for most of
my Java programming.

http://www.doncio.navy.mil/CHIPS/ArticleDetails.aspx?id=3489
http://www.doncio.navy.mil/CHIPS/ArticleDetails.aspx?id=3489

